Wide Range Simulation Study of Taylor Bubbles in Circular Milli and Microchannels
نویسندگان
چکیده
A deep knowledge of the hydrodynamics of two-phase flow in millichannels and microchannels is relevant to the design and control of micro structured equipment. While there is plenty of work published in this area, there is a lack of studies over a wide range of dimensionless numbers and some factors have not been properly addressed, such as the role of the Reynolds number, the features of recirculation regions in the liquid slug and the liquid film development length. Therefore, a wide range parametric study of isolated gas Taylor bubbles flowing in co-current with liquid in circular milliand microchannels is presented, in a wide range of Capillary (CaB) (0.01–2) and Reynolds numbers (ReB) (0.01–700). The shape and velocity of the bubbles are, together with the flow patterns in the flowing liquid, analyzed and compared with numerical and experimental correlations available in the literature. For low values of CaB, the streamlines (moving reference frame (MRF)) in the liquid slug show semi-infinite recirculations occupying a large portion of the cross-section of the channel. The mean velocity of the fluid moving inside the external envelope of the semi-infinite streamlines is equal to the bubble velocity. For high values of CaB, there are no recirculations and the bubble is moving faster or at least at the velocity of the liquid in the center of the tube; this flow pattern is often called bypass flow. The results also indicate that the liquid film surrounding the bubbles is for low CaB and ReB numbers almost stagnant, and its thickness accurately estimated with existing correlations. The stagnant film hypothesis developed provides an accurate approach to estimate the velocity of the bubble, in particular for low values of CaB. The asymptotic behavior of the studied parameters enables the extrapolation of data for CaB lower than 0.01. In addition to the simulations of isolated bubbles, simulations with two consecutive bubbles were also carried out; coalescence was only observed in very specific conditions. The results obtained in this study are directly applicable to co-current slug flow in milliand microchannels for 0.1 < ReB < 1000 and 0.02 < CaB < 2.
منابع مشابه
A NUMERICAL STUDY OF SINGLE-PHASE FORCED CONVECTIVE HEAT TRANSFER WITH FLOW FRICTION IN MICROCHANNELS (RESEARCH NOTE)
Three-dimensional simulations of the single-phase laminar flow and forced convective heat transfer of water in microchannels with small rectangular sections having specific hydraulic diameters and distinct geometric configurations were investigated numerically. The numerical results indicated that the laminar heat transfer was to be dependent upon the aspect ratio and the ratio of the hydraulic...
متن کاملنوسانات بازار سهام و سیاست پولی در ایران
This paper investigates the relationship between monetary policy and stock market fluctuations for Iranian economy within a DSGE model. This study models the role of monetary policy in two monetary regimes including money growth and Taylor rule with traditional factors and optimal simple rule in the new Keynesian monetary framework with nominal wage and price rigidities in the Iranian economy. ...
متن کاملStock Market Bubbles and Business Cycles: A DSGE Model for the Iranian Economy
T his paper investigates the movement between stock market bubbles and fluctuations in aggregate variables within a DSGE model for the Iranian economy. We apply a new Keynesian monetary framework with nominal rigidity in wages and prices based on the study by Ikeda (2013), which is developed with appropriate framework for the Iranian economy. We consider central bank behavior differe...
متن کاملSlip Velocity in Flow and Heat Transfer of Non-newtonian Fluids in Microchannels
The steady-state fully-developed laminar flow of non-Newtonian power-law fluids is examined in a circular microchannel with slip boundary condition and under an imposed constant wall heat flux. Effects of slip as well as the hydrodynamic and thermal key parameters on heat transfer and entropy generation are investigated. The results reveal that increasing the Brinkman number and the flow behavi...
متن کاملNumerical Study of the Effect of Surface Tension on Vapor Bubble Growth during Flow Boiling in Microchannels
Microchannel heat sinks typically consist of parallel channels connected through a common header. During flow boiling random temporal and spatial formation of vapor bubbles may lead to reversed flow in certain channels which causing an early CHF condition. Inside the microchannels the liquid surface tension forces is expected to play an important role and impact the vapor bubble growth and corr...
متن کامل